
GROUP THEORY 2024 - 25, SOLUTION SHEET 3

Exercise 1. Normal subgroups and Group Quotients
See algebraic structures lecture notes.

Exercise 2. First isomorphism theorem
See algebraic structures lecture notes.

Exercise 3. Correspondence Theorem and the Third Isomorphism Theorem
See algebraic structures lecture notes.

Exercise 4. Second isomorphism theorem
See algebraic structures lecture notes.

Exercise 5. Equivalence of definitions of group actions: Very important! To remember and
use in practice!
We construct a map

f : {Φ : G → Bij(X) | Φ is an action} ∼= {· : G×X → X| (1) & (2) hold}

given by

f : Φ 7→ ·Φ
where ·Φ : G × X → X is given by g ·Φ x = Φ(g)(x). Let us check that this set map is well
defined, i.e. that ·Φ satisfies (1) and (2):

(1) eG ·Φ x = Φ(eG)(x) = x, for all x ∈ X, by the fact that Φ is an action.
(2) g ·Φ (h ·Φ x) = g ·ΦΦ(h)(x) = Φ(g)(Φ(h)(x)) = Φ(gh)(x) = (gh) ·Φ x, for all g, h ∈ G and

x ∈ X, again by the fact that Φ is an action.

Similarly, we now construct a map in the other direction

g : {· : G×X → X| (1) & (2) hold} ∼= {Φ : G → Bij(X) | Φ is an action}

given by

· 7→ Φ·

where Φ· : G → Bij(X) is given by Φ·(g)(x) = g·x. Let us check that this set map is well defined,
i.e. that Φ· is an action. According to the lecture notes, it suffices to prove multiplicativity and
that each Φ·(g) : X → X is a bijection:

(1) Multiplicativity follows from that of ·: Φ·(gh)(x) = (gh) ·x = g ·(h ·x) = Φ·(g)(Φ·(h)(x))
for all g, h ∈ G and x ∈ X, so Φ·(gh) = Φ·(g) ◦ Φ·(h).

1



2 GROUP THEORY 2024 - 25, SOLUTION SHEET 3

(2) Let us show that for all g ∈ G, Φ·(g) is a bijection. For the surjectivity, take x ∈ X
arbitrary. Then Φ·(g)(g

−1 · x) = g · (g−1 · x) = (g · g−1) · x = eG · x = x. For injectivity,
take x, y ∈ X with g ·x = Φ·(g)(x) = Φ·(g)(y) = g ·y. By taking g−1 ·(g ·x) = g−1 ·(g ·y)
we obtain x = y.

It is straightforward to check that f ◦ g and g ◦ f are the identities on the respective sets, so we
have our desired bijection.

Exercise 6. To prove that the action Φ : G → Bij(G/H) given by Φg(aH) = gaH is not
faithful, we need to find g ̸= g′ ∈ G such that Φg = Φg′ . As H has at least two elements, take
g and g′ to be any such different elements of H. Let us show that Φg(aH) = Φg′(aH), for all
a ∈ G. Observe that Φg(aH) = Φg′(aH) ⇐⇒ gaH = g′aH ⇐⇒ a−1g′−1ga ∈ H, but this is
true for all a ∈ G, because g′−1g ∈ H by construction and H is normal.

Exercise 7. Let g ∈ G, clearly if g ∈ H then gHg−1 = H. If g /∈ H, then since the index of H
in G is two, we have that

G/H = {H, gH} and H\G = {H,Hg}.

This implies that gH = Hg as sets. It follows that gHg−1 = H. □

Exercise 8. Some properties of cosets useful in practice

(1) We have the following equivalences

gH = g′H ⇐⇒ ∃h ∈ H such that g′ = gh

⇐⇒ ∃h ∈ H such that g−1g′ = h

⇐⇒ g−1g′ ∈ H.

(2) You showed in the lectures that the cosets form a partion of G, hence they must coincide
or be disjoint.

(3) Suppose gH ∩ g′K ̸= ∅. This means there exists an element x ∈ G such that x ∈ gH
and x ∈ g′K. Thus, we have:

x = gh1 = g′k1

for some h1 ∈ H and k1 ∈ K. Rearranging this equation gives:

g−1g′ = h1k
−1
1 (1)

We are going to show by double inclusion that gH ∩ g′K = gh1(H ∩K).
Suppose first that y ∈ gH ∩ g′K. We can write:

y = gh2 = g′k2

for some h2 ∈ H and k2 ∈ K. Rearranging the equation and using (1) we obtain:

h2 = g−1g′k2 = (h1k
−1
1 )k2,
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From this we can deduce that h−1
1 h2 = k−1

1 k2 ∈ K ∩H. Hence, we can write

y = gh2 = gh1(k
−1
1 k2) ∈ gh1(K ∩H).

This prove the first inclusion. The second inclusion is direct.

Exercise 9. (1) Let φ : X → Y be a G-set isomorphism. Assume X is transitive. Let
y1, y2 ∈ Y . Since φ is a bijection, there exist x1, x2 ∈ X such that φ(x1) = y1 and
φ(x2) = y2. Since X is transitive, there exists g ∈ G such that g · x1 = x2. Applying
the isomorphism φ to both sides, we get:

g · y1 = g · φ(x1) = φ(g · x1) = φ(x2) = y2.

Hence, Y is transitive. If Y is transitive, show that φ−1 : Y → X is a G-set homomor-
phism and apply the same reasoning to φ−1 to show that X is transitive.

(2) Immediate.

(3) We construct a function

{Conjugacy classes of subgroups H ≤ G} → X/ ∼
[H] 7→ [G/H]

where G/H is endowed with the usual G-action. This action is clearly transitive. More-
over this map is well defined because if [H] = [H ′], meaning thatH andH ′ are conjugate,
then the two G-sets G/H and G/H ′ are isomorphic by exercise 3 of week 2. Hence they
are in the same isomorphism class and so they define the same element [G/H] = [G/H ′]
of X/ ∼.

We show that this function is bijective. It is injective because if H,H ′ are subgroups
such that G/H and G/H ′ are isomorphic as G-sets, then H and H ′ are conjugate by
exercise 3 of week 2.

To show that it is surjective, let G ↷ X be a transitive G-set. Choose a point x ∈ X
and consider its stabilizer H = StabG(x). By the orbit-stabilizer theorem there is a
bijection between X and G/H given by:

f : G/H → X

gH 7→ g · x.

This map is G-equivariant since

f(a · gH) = f(agH) = ag · x = a · (g · x) = a · f(gH)

and thus G/H ∼= X as G-sets. Therefore, any transitive G-set is isomorphic to G/H for
some subgroup H of G. This shows surjectivity.

(4) (a) G = Z/4Z. Its subgroups are:
• ⟨0⟩ (trivial subgroup)
• ⟨2⟩ ∼= Z/2Z
• Z/4Z
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None of these subgroups are conjugate (since Z/4Z is abelian), so we have three
distinct conjugacy classes. Thus, there are three isomorphism classes of transitive
Z/4Z-actions corresponding to these subgroups.

(b) G = Z/8Z. Its subgroups are:
• ⟨0⟩
• ⟨4⟩ ∼= Z/2Z
• ⟨2⟩ ∼= Z/4Z
• Z/8Z

Again, none of these subgroups are conjugate, so there are four distinct isomorphism
classes of transitive Z/8Z-actions.

(c) G = Z/2Z× Z/2Z. Its subgroups are:
• ⟨(0, 0)⟩ (trivial subgroup)
• ⟨(1, 0)⟩ ∼= Z/2Z
• ⟨(0, 1)⟩ ∼= Z/2Z
• ⟨(1, 1)⟩ ∼= Z/2Z
• Z/2Z× Z/2Z

All these subgroups are distinct and not conjugate (as Z/2Z×Z/2Z is abelian), so
there are five distinct isomorphism classes of transitive actions.

(d) G = S3. Its subgroups are:
• ⟨e⟩ (trivial subgroup)
• Three subgroups isomorphic to Z/2Z (generated by transpositions)
• ⟨(123)⟩ ∼= Z/3Z
• S3

The three subgroups isomorphic to Z/2Z are conjugate to each other, and the rest
are not conjugate. Hence, we have four distinct isomorphism classes of transitive
S3-actions.


